Medicine Platform
搜索
Product Catagories
首页 > Biomedical Research > TCMK-1细胞
TCMK-1细胞
单价 $208.33对比
询价 暂无
发货
品牌 ATCC、DSMZ、ECACC、RIKEN
过期 长期有效
更新 2025-08-12 16:28
 
详细信息
一、细胞特性
  1. 细胞名称:TCMK-1细胞(小鼠肾小管上皮细胞)
  2. 形态:上皮型,贴壁生长
  3. 含量:>1x106 个/瓶
  4. 污染:支原体、细菌、酵母和真菌检测为阴性
  5. 规格:T25瓶或者1mL冻存管包装


二、细胞接收后的处理:
1、贴壁细胞

  1. 收到T25方瓶细胞后,请检查是否漏液,如果漏液,请拍照片发给我们(冻存管细胞收到后直接37℃水浴复苏或直接放置于液氮中长期储存)。
  2. 请先在显微镜下确认细胞生长状态,去掉封口膜并将T25瓶置于37℃培养约2-3h。
  3. 弃去T25瓶中的培养基,换用新鲜的完全培养基。
  4. 如果细胞长满(90%以上)请及时进行细胞传代。
  5. 接到细胞次日,请检查细胞是否污染,若发现污染或疑似污染,请及时与我们取得联系。

2、悬浮细胞

  1. 收到细胞后,请检查是否漏液,如果漏液,请拍照片发给我们。
  2. 请先在显微镜下确认细胞生长状态,去掉封口膜并将15ml离心管置于37℃培养约2-3h。
  3. 1200rpm离心5min,弃去15ml离心管中的培养基,细胞沉淀用新鲜的完全培养基重悬并培养。
  4. 如果细胞长满(90%以上)请及时进行细胞传代。
  5. 接到细胞次日,请检查细胞是否污染,若发现污染或疑似污染,请及时与我们取得联系。

                      
本公司的细胞培养操作规程,供参考
一、培养基及培养冻存条件准备:

  1. 准备H-DMEM培养基,90%;优质胎牛血清,10%。
  2. 培养条件: 气相:空气,95%;二氧化碳,5%。 温度:37℃,培养箱湿度为70%-80%。
  3. 冻存液:90%血清,10%DMSO,现用现配。液氮储存。
二、细胞处理:1)复苏细胞:将含有1mL细胞悬液的冻存管迅速放入37℃水浴中(水面要低于冻存管盖部)摇晃解冻,移入事先准备好的含有4mL培养基的15ml离心管中混合均匀。在1000RPM条件下离心4分钟,弃去上清液,加入1mL培养基后吹匀。然后将所有细胞悬液移入含有5ml培养基的培养瓶中培养过夜。第二天换液并检查细胞密度。2)细胞传代:如果细胞密度达80%-90%,即可进行传代培养。

   对于贴壁细胞,传代可参考以下方法:

  1. 弃去培养上清,用不含钙、镁离子的PBS润洗细胞1-2次。
  2. 加2ml消化液(0.25%Trypsin-0.53mM EDTA)于培养瓶中,置于37℃培养箱中消化2-3分钟,然后在显微镜下观察细胞消化情况,若细胞大部分变圆并脱落,迅速拿回操作台,轻敲几下培养瓶后加入3ml此细胞的培养基终止消化。
  3. 轻轻吹打后吸出,移入15ml离心管中,在1200RPM条件下离心5分钟,弃去上清液,加入1mL培养液后吹匀。
  4. 移入到事先准备好的含有5ml培养基的T-25培养瓶中或含有14ml培养基的T-75培养瓶中培养。

3)细胞冻存:待细胞生长状态良好时,可进行细胞冻存。贴壁细胞冻存时,先要消化处理并进行细胞计数。消化方法按照细胞传代方法的1-3步骤进行,最后的重悬液使用血清。悬浮细胞直接计数后离心,用血清重悬浮,加DMSO至最终浓度为10%。加入DMSO后迅速混匀,按每1ml的数量分配到冻存管中。本公司按每个冻存管细胞数目大于1X106个细胞冻存。

注意事项:
1. 收到冻存管细胞后,若发现干冰已挥发干净、冻存管瓶盖脱落、破损及细胞有污染,请立即与我们联系。
2. 所有动物细胞均视为有潜在的生物危害性,必须在二级生物安全台内操作,并请注意防护,所有废液及接触过此细胞的器皿需要灭菌后方能丢弃。
3. 细胞用途:仅供科研使用。

发货方式:
复苏后发货:我们复苏细胞后发货,货期一周左右,免运费。(气温较好建议复苏后发货)
冻存发货(干冰运输):需额外增加干冰运费,选择干冰运输的我们发两管细胞,为了保证客户接种可靠性多发一管。(气温低于0℃须冻存发货)
细胞发货采取专业的运输包装,并选择最快捷的运输方式(顺丰速运或其他空运快递)

Pyrogallol-Phloroglucinol-6,6-Bieckol from Ecklonia cava Attenuates Tubular Epithelial Cell (TCMK-1) Death in Hypoxia/Reoxygenation Injury.

The hypoxia/reoxygenation (H/R) injury causes serious complications after the blood supply to the kidney is stopped during surgery. The main mechanism of I/R injury is the release of high-mobility group protein B1 (HMGB1) from injured tubular epithelial cells (TEC, TCMK-1 cell), which triggers TLR4 or RAGE signaling, leading to cell death. We evaluated whether the extracts of Ecklonia cava (E. cava) would attenuate TEC death induced by H/R injury. We also evaluated which phlorotannin-dieckol (DK), phlorofucofuroeckol A (PFFA), pyrogallol phloroglucinol-6,6-bieckol (PPB), or 2,7-phloroglucinol-6,6-bieckol (PHB)-would have the most potent effect in the context of H/R injury. We used for pre-hypoxia treatment, in which the phlorotannins from E. cava extracts were added before the onset of hypoxia, and a post- hypoxia treatment, in which the phlorotannins were added before the start of reperfusion. PPB most effectively reduced HMGB1 release and the expression of TLR4 and RAGE induced by H/R injury in both pre- and post-hypoxia treatment. PPB also most effectively inhibited the expression of NF-kB and release of the inflammatory cytokines TNF-α and IL-6 in both models. PPB most effectively inhibited cell death and expression of cell death signaling molecules such as Erk/pErk, JNK/pJNK, and p38/pp38. These results suggest that PPB blocks the HGMB1-TLR4/RAGE signaling pathway and decreases TEC death induced by H/R and that PPB can be a novel target for renal H/R injury therapy.

Effects of atrazine and curcumin exposure on TCMK-1 cells: Oxidative damage, pyroptosis and cell cycle arrest

Atrazine (ATR), a commonly used herbicide, is highly bioaccumulative and toxic, posing a threat to a wide range of organisms. Curcumin has strong antioxidant properties. However, it is unclear whether curcumin counteracts cellular pyroptosis as well as cell cycle arrest induced by ATR exposure. Therefore, we conducted a study using TCMK-1 cells and established cell models by adding 139 μmol/L ATR and 20 μmol/L curcumin. The results showed that ATR exposure produced excessive reactive oxygen species (ROS), reduced activities of enzymes such as GSH-PX, SOD and Total Antioxidant Capacity, markedly increased the content of H2O2, disrupted the antioxidant system, activated Caspase-1, and the expression levels of the pyroptosis-related genes NLRP3, GSDMD, ASC, Caspase-1, IL-1β and IL-18 were increased. The simultaneous excess of ROS led to DNA damage, activation of P53 led to elevated expression levels of P53 and P21, as a consequence, the expression levels of cyclinE, CDK2 and CDK4 were reduced. These results suggest that Cur can modulate ATR exposure-induced pyroptosis as well as cell cycle arrest in TCMK-1 cells by governing oxidative stress.